What Are the Keys to the Adaptive Success of European Wild Rabbit (Oryctolagus cuniculus) in the Iberian Peninsula? (2024)

1. Delibes-Mateos M., Delibes M., Ferreras P., Villafuerte R. Key Role of European Rabbits in the Conservation of the Western Mediterranean Basin Hotspot. Conserv. Biol. 2008;22:1106–1117. doi:10.1111/j.1523-1739.2008.00993.x. [PubMed] [CrossRef] [Google Scholar]

2. Valkama J., Korpimäki E., Arroyo B., Beja P., Bretagnolle V., Bro E., Kenward R., Mañosa S., Redpath S.M., Thirgood S., et al. Birds of prey as limiting factors of gamebird populations in Europe: A review. Biol. Rev. 2005;80:171–203. doi:10.1017/S146479310400658X. [PubMed] [CrossRef] [Google Scholar]

3. Palomares F., Delibes M., Revilla E., Calzada J., Fedriani J.M. Spatial Ecology of Iberian Lynx and Abundance of European Rabbits in Southwestern Spain. Wildl. Monogr. 2001;148:1–36. [Google Scholar]

4. Nowell K., Jackson P. Wild Cats: Status Survey and Conservation Action Plan. IUCN Publications; Gland, Switzerland: 1996. The Burlington Press: Cambridge, UK. [Google Scholar]

5. Ferrer M. The Spanish Imperial Eagle. Lynx Edicions; Barcelona, Spain: 2001. [Google Scholar]

6. Calvete C., Mendoza M., Sarto M.P., de Bagüés M.P.J., Luján L., Molín J., Calvo A.J., Monroy F., Calvo J.H. Detection of Rabbit Hemorrhagic Disease Virus GI.2/RHDV2/b in the Mediterranean Pine Vole (Microtus duodecimcostatus) and White-Toothed Shrew ( Crocidura russula) J. Wildl. Dis. 2019;55:467–472. doi:10.7589/2018-05-124. [PubMed] [CrossRef] [Google Scholar]

7. Villafuerte R., Castro F., Ramírez E., Cotilla I., Parra F., Delibes-Mateos M., Recuerda P., Rouco C. Large-scale assessment of myxomatosis prevalence in European wild rabbits (Oryctolagus cuniculus) 60years after first outbreak in Spain. Res. Vet. Sci. 2017;114:281–286. doi:10.1016/j.rvsc.2017.05.014. [PubMed] [CrossRef] [Google Scholar]

8. Prolonged Decline in the Abundance of Wild European Rabbits Oryctolagus Cuniculus and High Immunity Level over Three Years following the Arrival of Rabbit Haemorrhagic Disease. [(accessed on 6 August 2021)]; Available online: https://bioone.org/journals/wildlife-biology/volume-6/issue-4/wlb.2000.009/Prolonged-decline-in-the-abundance-of-wild-European-rabbits-iOryctolagus/10.2981/wlb.2000.009.full

9. Villafuerte R., Calvete C., Gortázar C., Moreno S. First epizootic of rabbit hemorrhagic disease in free living populations of Oryctolagus cuniculus at Doñana National Park, Spain. J. Wildl. Dis. 1994;30:176–179. doi:10.7589/0090-3558-30.2.176. [PubMed] [CrossRef] [Google Scholar]

10. Osacar-Jimenez J.J., Lucientes-Curdi J., Calvete-Margolles C. Abiotic factors influencing the ecology of wild rabbit fleas in north-eastern Spain: Ecology of wild rabbit fleas in Spain. Med. Vet. Entomol. 2001;15:157–166. doi:10.1046/j.1365-2915.2001.00290.x. [PubMed] [CrossRef] [Google Scholar]

11. Revilla E., Palomares F., Fernández N. Characteristics, location and selection of diurnal resting dens by Eurasian badgers (Meles meles) in a low density area. J. Zool. 2001;255:291–299. doi:10.1017/S0952836901001388. [CrossRef] [Google Scholar]

12. Gálvez L.A., López-Pintor J., De Miguel G., Alonso M., Rueda S., Rebollo S., Gómez-Sal A. Lagomorph Biology: Evolution, Ecology and Conservation. Springer; Berlin, Germany: 2008. Ecosystem engineering effects of European rabbits in a Mediterranean habitat; pp. 125–140. [Google Scholar]

13. Malo J.E., Jimenez B., Suarez F. Seed bank build-up in small disturbances in a Mediterranean pasture: The contribution of endozoochorous dispersal by rabbits. Ecography. 1995;18:73–82. doi:10.1111/j.1600-0587.1995.tb00120.x. [CrossRef] [Google Scholar]

14. Malo J.E., Suárez F. Herbivorous mammals as seed dispersers in a Mediterranean dehesa. Oecologia. 1995;104:246–255. doi:10.1007/BF00328589. [PubMed] [CrossRef] [Google Scholar]

15. Cortés-Avizanda A., Colomer M.À., Margalida A., Ceballos O., Donázar J.A. Modeling the consequences of the demise and potential recovery of a keystone-species: Wild rabbits and avian scavengers in Mediterranean landscapes. Sci. Rep. 2015;5:17033. doi:10.1038/srep17033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Angulo E., Cooke B. First synthesize new viruses then regulate their release? The case of the wild rabbit: Gm rabbit viruses and their regulation. Mol. Ecol. 2002;11:2703–2709. doi:10.1046/j.1365-294X.2002.01635.x. [PubMed] [CrossRef] [Google Scholar]

17. Robinson A.J., Jackson R., Kerr P., Merchant J., Parer I., Pech R. Progress towards using recombinant myxoma virus as a vector for fertility control in rabbits. Reprod. Fertil. Dev. 1997;9:77. doi:10.1071/R96067. [PubMed] [CrossRef] [Google Scholar]

18. Cooke B. Rabbits: Manageable environmental pests or participants in new Australian ecosystems? Wildl. Res. 2012;39:279–289. doi:10.1071/WR11166. [CrossRef] [Google Scholar]

19. Bergstrom D.M., Lucieer A., Kiefer K., Wasley J., Belbin L., Pedersen T.K., Chown S.L. Indirect effects of invasive species removal devastate World Heritage Island. J. Appl. Ecol. 2009;46:73–81. doi:10.1111/j.1365-2664.2008.01601.x. [CrossRef] [Google Scholar]

20. Blackburn T.M., Cassey P., Duncan R.P., Evans K.L., Gaston K.J. Avian extinction and mammalian introductions on oceanic islands. Science. 2004;305:1955–1958. doi:10.1126/science.1101617. [PubMed] [CrossRef] [Google Scholar]

21. O’Dowd D.J., Green P.T., Lake P.S. Invasional “meltdown” on an oceanic island. Ecol. Lett. 2003;6:812–817. doi:10.1046/j.1461-0248.2003.00512.x. [CrossRef] [Google Scholar]

22. Courchamp F., Chapuis J.-L., Pascal M. Mammal invaders on islands: Impact, control and control impact. Biol. Rev. 2003;78:347–383. doi:10.1017/S1464793102006061. [PubMed] [CrossRef] [Google Scholar]

23. Nogales M., Martin A., Tershy B.R., Donlan C.J., Veitch D., Puerta N., Wood B., Alonso J. A Review of Feral Cat Eradication on Islands. Conserv. Biol. 2004;18:310–319. doi:10.1111/j.1523-1739.2004.00442.x. [CrossRef] [Google Scholar]

24. Delibes-Mateos M., Ferreras P., Villafuerte R. Rabbit populations and game management: The situation after 15 years of rabbit haemorrhagic disease in central-southern Spain. Biodivers. Conserv. 2008;17:559–574. doi:10.1007/s10531-007-9272-5. [CrossRef] [Google Scholar]

25. Moreno S., Villafuerte R. Traditional management of scrubland for the conservation of rabbits Oryctolagus cuniculus and their predators in Doñana National Park, Spain. Biol. Conserv. 1995;73:81–85. doi:10.1016/0006-3207(95)90069-1. [CrossRef] [Google Scholar]

26. Ferreira C., Alves P.C. Influence of habitat management on the abundance and diet of wild rabbit (Oryctolagus cuniculus algirus) populations in Mediterranean ecosystems. Eur. J. Wildl. Res. 2009;55:487–496. doi:10.1007/s10344-009-0257-4. [CrossRef] [Google Scholar]

27. Villafuerte R., Delibes-Mateos M., Oryctolagus cuniculus IUCN 2019. [(accessed on 14 April 2021)];2019 doi:10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en. Available online: [CrossRef]

28. Lees A.C., Bell D.J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 2008;38:304–320. doi:10.1111/j.1365-2907.2008.00116.x. [CrossRef] [Google Scholar]

29. Murphy W.J., Eizirik E., Johnson W.E., Zhang Y.P., Ryder O.A., O’Brien S.J. Molecular phylogenetics and the origins of placental mammals. Nature. 2001;409:614–618. doi:10.1038/35054550. [PubMed] [CrossRef] [Google Scholar]

30. Lacher T., Murphy W., Rogan J., Smith A., Upham N. Evolution, Phylogeny, Ecology and Conservation of the Clade Glires: Lagomorpha and Rodentia. Lynx Edicions; Barcelona, Spain: 2016. pp. 15–26. [Google Scholar]

31. Multilocus Phylogeny and Taxonomy of Pikas of the Subgenus Ochotona (Lagomorpha, Ochotonidae)-Lissovsky-2019-Zoologica Scripta-Wiley Online Library. [(accessed on 14 April 2021)]; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/zsc.12325

32. Álvarez-Castañeda S.T., Lorenzo C. Phylogeography and phylogeny of Lepus californicus (Lagomorpha: Leporidae) from Baja California Peninsula and adjacent islands. Biol. J. Linn. Soc. 2017;121:15–27. doi:10.1093/biolinnean/blw019. [CrossRef] [Google Scholar]

33. Awadi A., Suchentrunk F., Makni M., Ben Slimen H. Variation of partial transferrin sequences and phylogenetic relationships among hares (Lepus capensis, Lagomorpha) from Tunisia. Genetica. 2016;144:497–512. doi:10.1007/s10709-016-9916-z. [PubMed] [CrossRef] [Google Scholar]

34. Ferrand N., Branco M. The evolutionary history of the European rabbit (Oryctolagus cuniculus): Major patterns of population differentiation and geographic expansion inferred from protein polymorphism. In: Weiss S., Ferrand N., editors. Phylogeography of Southern European Refugia: Evolutionary Perspectives on the Origins and Conservation of European Biodiversity. Springer; Dordrecht, The Netherlands: 2007. pp. 207–235. [Google Scholar]

35. Petrescu-Mag I., Păpuc T., Ioan Gheorghe O., Botha M. A review of the phylogeny of the European rabbit (Oryctolagus cuniculus) Rabbit. Genet. 2019;9:1–9. [Google Scholar]

36. Branco M., Ferrand N., Monnerot M. Phylogeography of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity. 2000;85 Pt 4:307–317. doi:10.1046/j.1365-2540.2000.00756.x. [PubMed] [CrossRef] [Google Scholar]

37. Watson J. Domestication of the Rabbit, Oryctolagus Cuniculus (L.), at Lattara. 2019.

38. Naff K.A., Craig S. Chapter 6—The Domestic Rabbit, Oryctolagus cuniculus: Origins and History. In: Suckow M.A., Stevens K.A., Wilson R.P., editors. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. American College of Laboratory Animal Medicine, Academic Press; Boston, MA, USA: 2012. pp. 157–163. [Google Scholar]

39. Randy Hall Recognized Breeds. ARBA. [(accessed on 14 April 2021)]; Available online: https://arba.net/recognized-breeds/

40. The BRC—Welcome to the Official Website of the British Rabbit Council. [(accessed on 15 April 2021)]; Available online: https://thebritishrabbitcouncil.org/

41. Dutta S., Sengupta P. Rabbits and men: Relating their ages. J. Basic Clin. Physiol. Pharmacol. 2018;29:427–435. doi:10.1515/jbcpp-2018-0002. [PubMed] [CrossRef] [Google Scholar]

42. Estany J., Baselga M., Blasco A., Camacho J. Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livest. Prod. Sci. 1989;21:67–75. doi:10.1016/0301-6226(89)90021-3. [CrossRef] [Google Scholar]

43. Andreji J., Fik M., Arpášová H., Gunišová S. Comparison of the Growth Performance of Rabbits of the Hycole Broiler Hybrid in Two breeding models. Sci. Pap. Anim. Sci. Biotechnol. 2018;51:103–105. [Google Scholar]

44. Petrescu-Mag I.V., Botha M., Gavriloaie C. Papillon breeds are not true breeds, but varieties. Rabbit. Genet. 2016;6:6. [Google Scholar]

45. Vicente J.S., Llobat L., Viudes-de-Castro M.P., Lavara R., Baselga M., Marco-Jiménez F. Gestational losses in a rabbit line selected for growth rate. Theriogenology. 2012;77:81–88. doi:10.1016/j.theriogenology.2011.07.019. [PubMed] [CrossRef] [Google Scholar]

46. Alves J.M., Carneiro M., Afonso S., Lopes S., Garreau H., Boucher S., Allain D., Queney G., Esteves P.J., Bolet G., et al. Levels and Patterns of Genetic Diversity and Population Structure in Domestic Rabbits. PLoS ONE. 2015;10:e0144687. doi:10.1371/journal.pone.0144687. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Carneiro M., Afonso S., Geraldes A., Garreau H., Bolet G., Boucher S., Tircazes A., Queney G., Nachman M.W., Ferrand N. The Genetic Structure of Domestic Rabbits. Mol. Biol. Evol. 2011;28:1801–1816. doi:10.1093/molbev/msr003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Carneiro M., Rubin C.-J., Di Palma F., Albert F.W., Alföldi J., Martinez Barrio A., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345:1074–1079. doi:10.1126/science.1253714. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Queney G., Ferrand N., Marchandeau S., Azevedo M., Mougel F., Branco M., Monnerot M. Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Mol. Ecol. 2000;9:1253–1264. doi:10.1046/j.1365-294x.2000.01003.x. [PubMed] [CrossRef] [Google Scholar]

50. Geraldes A., Rogel-Gaillard C., Ferrand N. High levels of nucleotide diversity in the European rabbit (Oryctolagus cuniculus) SRY gene. Anim. Genet. 2005;36:349–351. doi:10.1111/j.1365-2052.2005.01300.x. [PubMed] [CrossRef] [Google Scholar]

51. Branco M., Ferrand N. Genetic polymorphism of rabbit (Oryctolagus cuniculus) tissue acid phosphatases (ACP2 and ACP3) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998;120:405–409. doi:10.1016/S0305-0491(98)10047-0. [PubMed] [CrossRef] [Google Scholar]

52. Branco M., Lopes G., Ferrand N. Genetic polymorphism of properdin factor B (BF) in domestic rabbit. Anim. Genet. 1998;29:135–137. doi:10.1046/j.1365-2052.1998.00255.x. [PubMed] [CrossRef] [Google Scholar]

53. Branco M., Ferrand N. Genetic polymorphism of antithrombin III, haptoglobin, and haemopexin in wild and domestic European rabbits. Biochem. Genet. 2002;40:387–393. doi:10.1023/A:1020725511763. [PubMed] [CrossRef] [Google Scholar]

54. Pinheiro A., Neves F., de Matos A.L., Abrantes J., van der Loo W., Mage R., Esteves P.J. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics. 2016;68:83–107. doi:10.1007/s00251-015-0868-8. [PubMed] [CrossRef] [Google Scholar]

55. Alves J.M., Carneiro M., Cheng J.Y., de Matos A.L., Rahman M.M., Loog L., Campos P.F., Wales N., Eriksson A., Manica A., et al. Parallel adaptation of rabbit populations to myxoma virus. Science. 2019;363:1319–1326. doi:10.1126/science.aau7285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Neves F., Abrantes J., Steinke J.W., Esteves P.J. Maximum-likelihood approaches reveal signatures of positive selection in IL genes in mammals. Innate Immun. 2014;20:184–191. doi:10.1177/1753425913486687. [PubMed] [CrossRef] [Google Scholar]

57. Perkins H.D., van Leeuwen B.H., Hardy C.M., Kerr P.J. The complete cDNA sequences of IL-2, IL-4, IL-6 AND IL-10 from the European rabbit (Oryctolagus cuniculus) Cytokine. 2000;12:555–565. doi:10.1006/cyto.1999.0658. [PubMed] [CrossRef] [Google Scholar]

58. Marques R.M., Costa-E-Silva A., Águas A.P., Teixeira L., Ferreira P.G. Early inflammatory response of young rabbits attending natural resistance to calicivirus (RHDV) infection. Vet. Immunol. Immunopathol. 2012;150:181–188. doi:10.1016/j.vetimm.2012.09.038. [PubMed] [CrossRef] [Google Scholar]

59. Siewe B.T., Kalis S.L., Esteves P.J., Zhou T., Knight K.L. A novel functional rabbit IL-7 isoform. Dev. Comp. Immunol. 2010;34:828–836. doi:10.1016/j.dci.2010.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Shibata K., Nomiyama H., Yoshie O., Tanase S. Genome diversification mechanism of rodent and Lagomorpha chemokine genes. BioMed Res. Int. 2013;2013:856265. doi:10.1155/2013/856265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Neves F., Abrantes J., Lissovsky A.A., Esteves P.J. Pseudogenization of CCL14 in the Ochotonidae (pika) family. Innate Immun. 2015;21:647–654. doi:10.1177/1753425915577455. [PubMed] [CrossRef] [Google Scholar]

62. Van der Loo W., Afonso S., de Matos A.L., Abrantes J., Esteves P.J. Pseudogenization of the MCP-2/CCL8 chemokine gene in European rabbit (genus Oryctolagus), but not in species of Cottontail rabbit (Sylvilagus) and Hare (Lepus) BMC Genet. 2012;13:72. doi:10.1186/1471-2156-13-72. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. De Matos A.L., Lanning D.K., Esteves P.J. Genetic characterization of CCL3, CCL4 and CCL5 in leporid genera Oryctolagus, Sylvilagus and Lepus. Int. J. Immunogenet. 2014;41:154–158. doi:10.1111/iji.12095. [PubMed] [CrossRef] [Google Scholar]

64. Carmo C.R., Esteves P.J., Ferrand N., van der Loo W. Genetic variation at chemokine receptor CCR5 in leporids: Alteration at the 2nd extracellular domain by gene conversion with CCR2 in Oryctolagus, but not in Sylvilagus and Lepus species. Immunogenetics. 2006;58:494–501. doi:10.1007/s00251-006-0095-4. [PubMed] [CrossRef] [Google Scholar]

65. A Shared Unusual Genetic Change at the Chemokine Receptor Type 5 between Oryctolagus, Bunolagus and Pentalagus | SpringerLink. [(accessed on 17 April 2021)]; Available online: https://link.springer.com/article/10.1007/s10592-009-9990-1

66. Takeda K., Akira S. Toll-like receptors. Curr. Protoc. Immunol. 2015;109:14.12.1–14.12.10. doi:10.1002/0471142735.im1412s109. [PubMed] [CrossRef] [Google Scholar]

67. Lai C.-Y., Liu Y.-L., Yu G.-Y., Maa M.-C., Leu T.-H., Xu C., Luo Y., Xiang R., Chuang T.-H. TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7. Vaccine. 2014;32:5593–5599. doi:10.1016/j.vaccine.2014.07.104. [PubMed] [CrossRef] [Google Scholar]

68. Abrantes J., Areal H., Esteves P.J. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: Genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet. 2013;14:73. doi:10.1186/1471-2156-14-73. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. De Matos A.L., McFadden G., Esteves P.J. Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolagus, Sylvilagus, and Lepus. Immunogenetics. 2014;66:43–52. doi:10.1007/s00251-013-0740-7. [PubMed] [CrossRef] [Google Scholar]

70. O’Rand M.G., Nikolajczyk B.S. Fertilization in the Rabbit. In: Dunbar B.S., O’Rand M.G., editors. A Comparative Overview of Mammalian Fertilization. Springer; Boston, MA, USA: 1991. pp. 271–279. [Google Scholar]

71. Details-Vertebrate Reproductive Cycles-Biodiversity Heritage Library. [(accessed on 25 April 2021)]; Available online: https://www.biodiversitylibrary.org/bibliography/7448

72. Nalbandov A.V. Reproductive Physiology: Comparative Reproductive Physiology of Domestic Animals, Laboratory Animals, and Man/Drawings by Evan Gillespie. WHFreeman; San Francisco, CA, USA: 1958. (Series of College Texts in Agricultural Science. Animal Science). [Google Scholar]

73. Dobney K., Larson G. Genetics and animal domestication: New windows on an elusive process. J. Zool. 2006;269:261–271. doi:10.1111/j.1469-7998.2006.00042.x. [CrossRef] [Google Scholar]

74. Carneiro M., Piorno V., Rubin C.-J., Alves J.M., Ferrand N., Alves P.C., Andersson L. Candidate genes underlying heritable differences in reproductive seasonality between wild and domestic rabbits. Anim. Genet. 2015;46:418–425. doi:10.1111/age.12299. [PubMed] [CrossRef] [Google Scholar]

75. Ben Saad M.M., Maurel D.L. Long-day inhibition of reproduction and circadian photogonadosensitivity in Zembra Island wild rabbits (Oryctolagus cuniculus) Biol. Reprod. 2002;66:415–420. doi:10.1095/biolreprod66.2.415. [PubMed] [CrossRef] [Google Scholar]

76. Boyd I.L. Effect of photoperiod and melatonin on testis development and regression in wild European rabbits (Oryctolagus cuniculus) Biol. Reprod. 1985;33:21–29. doi:10.1095/biolreprod33.1.21. [PubMed] [CrossRef] [Google Scholar]

77. Boyd I.L. Photoperiodic regulation of seasonal testicular regression in the wild European rabbit (Oryctolagus cuniculus) J. Reprod. Fertil. 1986;77:463–470. doi:10.1530/jrf.0.0770463. [PubMed] [CrossRef] [Google Scholar]

78. Boyd I.L., Bray C.J. Nutritional ecology of the wild rabbit—An input to the timing of reproduction. Proc. Nutr. Soc. 1989;48:81–91. doi:10.1079/PNS19890012. [PubMed] [CrossRef] [Google Scholar]

79. Allen P., Brambell F.W.R., Mills I.H. Studies on sterility and prenatal mortality in wild rabbits; the reliability of estimates of prenatal mortality based on counts of corpora lutea, implantation sites and embryos. J. Exp. Biol. 1947;23:312–331. doi:10.1242/jeb.23.3-4.312. [PubMed] [CrossRef] [Google Scholar]

80. Daly J.C. Effects of social organization and environmental diversity on determining the genetic structure of a population of the wild rabbit, oryctolagus cuniculus. Evol. Int. J. Org. Evol. 1981;35:689–706. doi:10.1111/j.1558-5646.1981.tb04930.x. [PubMed] [CrossRef] [Google Scholar]

81. Mounolou J.-C., Queney G., Bolet G., Dennebouy N., Monnerot M. Integrative biology and genetic resources management. Integr. Comp. Biol. 2003;43:271–275. doi:10.1093/icb/43.2.271. [PubMed] [CrossRef] [Google Scholar]

82. Marín-García P.J., Llobat L. How Does Protein Nutrition Affect the Epigenetic Changes in Pig? A Review. Animals. 2021;11:544. doi:10.3390/ani11020544. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Martin G.R., Twigg L.E., Zampichelli L. Seasonal changes in the diet of the European rabbit (Oryctolagus cuniculus) from three different Mediterranean habitats in south-western Australia. Wildl. Res. 2007;34:25. doi:10.1071/WR06044. [CrossRef] [Google Scholar]

84. Carabaño R., Piquer J., Menoyo D., Badiola I. Nutrition of the Rabbit. CABI; Wallingford, UK: The Digestive System of the Rabbit. [Google Scholar]

85. Portsmouth J.I. Nutrition and the Climatic Environment. Butterworths; London, UK: 1977. The nutrition of the rabbits. [Google Scholar]

86. Bellier R., Gidenne T., Vernay M., Colin M. In vivo study of circadian variations of the cecal fermentation pattern in postweaned and adult rabbits. J. Anim. Sci. 1995;73:128. doi:10.2527/1995.731128x. [PubMed] [CrossRef] [Google Scholar]

87. Bellier R., Gidenne T. Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit. Br. J. Nutr. 1996;75:353–363. doi:10.1079/BJN19960139. [PubMed] [CrossRef] [Google Scholar]

88. Carabaño R., Villamide M.J., García J., Nicodemus N., Llorente A., Chamorro S., Menoyo D. New concepts and objectives for protein-amino acid nutrition in rabbits: A review. World Rabbit Sci. 2010;17:1–14. doi:10.4995/wrs.2009.664. [CrossRef] [Google Scholar]

89. Spreadbury D. A study of the protein and amino acid requirements of the growing New Zealand White rabbit with emphasis on lysine and the sulphur-containing amino acids. Br. J. Nutr. 1978;39:601–613. doi:10.1079/BJN19780075. [PubMed] [CrossRef] [Google Scholar]

90. García A.I., de Bias J.C., Carabaño R. Effect of type of diet (casein-based or protein-free) and caecotrophy on ileal endogenous nitrogen and amino acid flow in rabbits. Anim. Sci. 2004;79:231–240. doi:10.1017/S1357729800090093. [CrossRef] [Google Scholar]

91. Partridge G.G., Garthwaite P.H., Findlay M. Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. J. Agric. Sci. 1989;112:171–178. doi:10.1017/S0021859600085063. [CrossRef] [Google Scholar]

92. Fernández C., Fraga M.J. Effect of fat inclusion in diets for rabbits on the efficiency of digestible energy and protein utilization. World Rabbit Sci. 2010;4:19–23. doi:10.4995/wrs.1996.265. [CrossRef] [Google Scholar]

93. Whittemore C.T., Hazzledine M.J., Close W.H. Nutrient Requirement Standards for Pigs. BSAS, Bristish Society fo Animal Science; Penicuik, UK: 2003. [Google Scholar]

94. Pascual J.J., Motta W., Cervera C., Quevedo F., Blas E., Fernández-Carmona J. Effect of dietary energy source on the performance and perirenal fat thickness evolution of primiparous rabbit does. Anim. Sci. 2002;75:267–279. doi:10.1017/S1357729800053029. [CrossRef] [Google Scholar]

95. Xiccato G., Parigi-Bini R., Dalle Zotte A., Carazzolo A., Cossu M.E. Effect of dietary energy level, addition of fat and physiological state on performance and energy balance of lactating and pregnant rabbit does. Anim. Sci. 1995;61:387–398. doi:10.1017/S135772980001393X. [CrossRef] [Google Scholar]

96. Jilge B., Hudson R. Diversity and development of circadian rhythms in the European rabbit. Chronobiol. Int. 2001;18:1–26. doi:10.1081/CBI-100001275. [PubMed] [CrossRef] [Google Scholar]

97. Savietto D., Friggens N.C., Pascual J. Reproductive robustness differs between generalist and specialist maternal rabbit lines: The role of acquisition and allocation of resources. Genet. Sel. Evol. 2015;47:2. doi:10.1186/s12711-014-0073-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Marín-García P.J., López-Luján M.C., Ródenas L., Martínez-Paredes E.M., Blas E., Pascual J.J. Plasmatic Urea Nitrogen in Growing Rabbits with Different Combinations of Dietary Levels of Lysine, Sulphur Amino Acids and Threonine. Animals. 2020;10:946. doi:10.3390/ani10060946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Marín-García P.J., Ródenas L., Martínez-Paredes E., Cambra-López M., Blas E., Pascual J.J. A moderate protein diet does not cover the requirements of growing rabbits with high growth rate. Anim. Feed Sci. Technol. 2020;264:114495. doi:10.1016/j.anifeedsci.2020.114495. [CrossRef] [Google Scholar]

100. Marín-García P.J., del López-Luján M.C., Ródenas L., Martínez-Paredes E.M., Blas E., Pascual J.J. Plasma urea nitrogen as an indicator of amino acid imbalance in rabbit diets. World Rabbit Sci. 2020;28:63. doi:10.4995/wrs.2020.12781. [CrossRef] [Google Scholar]

101. Calvete C., Villafuerte R., Lucientes J., Osacar J.J. Effectiveness of traditional wild rabbit restocking in Spain. J. Zool. 1997;241:271–277. doi:10.1111/j.1469-7998.1997.tb01957.x. [CrossRef] [Google Scholar]

102. Villafuerte R., Lazo A., Moreno S. Influence of food abundance and quality on rabbit fluctuations: Conservation and management implications in Doñana National Park (SW Spain) Rev. Ecol. 1997;52:345–356. [Google Scholar]

103. Ulappa A.C., Kelsey R.G., Frye G.G., Rachlow J.L., Shipley L.A., Bond L., Pu X., Forbey J.S. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore. J. Mammal. 2014;95:834–842. doi:10.1644/14-MAMM-A-025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Marín-García P.J., López-Luján M.C., Ródenas L., Martínez-Paredes E., Cambra-López M., Blas E., Pascual J.J. Do Growing Rabbits with a High Growth Rate Require Diets with High Levels of Essential Amino Acids? A Choice-Feeding Trial. Animals. 2021;11:824. doi:10.3390/ani11030824. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Carabaño R., Badiola I., Chamorro S., García J., García-Ruiz A.I., García-Rebollar P., Gómez-Conde M.S., Gutiérrez I., Nicodemus N., Villamide M.J., et al. New trends in rabbit feeding: Influence of nutrition on intestinal health. A review. Span. J. Agric. Res. 2008;6:15. doi:10.5424/sjar/200806S1-5346. [CrossRef] [Google Scholar]

106. Caba M., González-Mariscal G., Meza E. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain. Front. Endocrinol. 2018;9:106. doi:10.3389/fendo.2018.00106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Apel S., Hudson R., Coleman G.J., Rödel H.G., Kennedy G.A. Regulation of the rabbit’s once-daily pattern of nursing: A circadian or hourglass-dependent process? Chronobiol. Int. 2020;37:1151–1162. doi:10.1080/07420528.2020.1805459. [PubMed] [CrossRef] [Google Scholar]

108. Weterings M.J.A., Moonen S., Prins H.H.T., van Wieren S.E., van Langevelde F. Food quality and quantity are more important in explaining foraging of an intermediate-sized mammalian herbivore than predation risk or competition. Ecol. Evol. 2018;8:8419–8432. doi:10.1002/ece3.4372. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Terhune C.E., Sylvester A.D., Scott J.E., Ravosa M.J. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J. Exp. Biol. 2020;223:jeb220988. doi:10.1242/jeb.220988. [PubMed] [CrossRef] [Google Scholar]

110. Camp M.J., Shipley L.A., Milling C.R., Rachlow J.L., Forbey J.S. Interacting effects of ambient temperature and food quality on the foraging ecology of small mammalian herbivores. J. Therm. Biol. 2018;71:83–90. doi:10.1016/j.jtherbio.2017.10.021. [PubMed] [CrossRef] [Google Scholar]

111. Funosas G., Triadó-Margarit X., Castro F., Villafuerte R., Delibes-Mateos M., Rouco C., Casamayor E.O. Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus) Sci. Rep. 2021;11:766. doi:10.1038/s41598-020-80782-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Delibes-Mateos M., Farfán M.Á., Rouco C., Olivero J., Márquez A.L., Fa J.E., Vargas J.M., Villafuerte R. A large-scale assessment of European rabbit damage to agriculture in Spain: Agricultural damage by rabbits in Spain. Pest Manag. Sci. 2018;74:111–119. doi:10.1002/ps.4658. [PubMed] [CrossRef] [Google Scholar]

113. Duarte C.M., Agustí S., Kennedy H., Vaqué D. The Mediterranean climate as a template for Mediterranean marine ecosystems: The example of the northeast Spanish littoral. Prog. Oceanogr. 1999;44:245–270. doi:10.1016/S0079-6611(99)00028-2. [CrossRef] [Google Scholar]

114. Calone R., Bregaglio S., Sanoubar R., Noli E., Lambertini C., Barbanti L. Physiological Adaptation to Water Salinity in Six Wild Halophytes Suitable for Mediterranean Agriculture. Plants. 2021;10:309. doi:10.3390/plants10020309. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Williams C.K., Moore R.J. Phenotypic Adaptation and Natural Selection in the Wild Rabbit, Oryctolagus cuniculus, in Australia. J. Anim. Ecol. 1989;58:495. doi:10.2307/4844. [CrossRef] [Google Scholar]

116. Bello-Rodríguez V., Mateo R.G., Pellissier L., Cubas J., Cooke B., González-Mancebo J.M. Forecast increase in invasive rabbit spread into ecosystems of an oceanic island (Tenerife) under climate change. Ecol. Appl. 2021;31:e02206. doi:10.1002/eap.2206. [PubMed] [CrossRef] [Google Scholar]

117. Calvete C., Angulo E., Estrada R. Conservation of European wild rabbit populations when hunting is age and sex selective. Biol. Conserv. 2005;121:623–634. doi:10.1016/j.biocon.2004.06.013. [CrossRef] [Google Scholar]

118. Charles N. ‘Animals Just Love You as You Are’: Experiencing Kinship across the Species Barrier. Sociology. 2014;48:715–730. doi:10.1177/0038038513515353. [CrossRef] [Google Scholar]

119. Calvete C., Estrada R., Angulo E., Cabezas-Ruiz S. Habitat factors related to wild rabbit conservation in an agricultural landscape. Landsc. Ecol. 2004;19:533–544. doi:10.1023/B:LAND.0000036139.04466.06. [CrossRef] [Google Scholar]

120. Delibes-Mateos M., Arroyo B., Ruiz J., Garrido F.E., Redpath S., Villafuerte R. Conflict and cooperation in the management of European rabbit Oryctolagus cuniculus damage to agriculture in Spain. People Nat. 2020;2:1223–1236. doi:10.1002/pan3.10157. [CrossRef] [Google Scholar]

121. Palomares F. Vegetation structure and prey abundance requirements of the Iberian lynx: Implications for the design of reserves and corridors: Characteristics of lynx habitats. J. Appl. Ecol. 2001;38:9–18. doi:10.1046/j.1365-2664.2001.00565.x. [CrossRef] [Google Scholar]

122. Hughes G.O., Thuiller W., Midgley G.F., Collins K. Environmental change hastens the demise of the critically endangered riverine rabbit (Bunolagus monticularis) Biol. Conserv. 2008;141:23–34. doi:10.1016/j.biocon.2007.08.004. [CrossRef] [Google Scholar]

What Are the Keys to the Adaptive Success of European Wild Rabbit (Oryctolagus cuniculus) in the Iberian Peninsula? (2024)

FAQs

What Are the Keys to the Adaptive Success of European Wild Rabbit (Oryctolagus cuniculus) in the Iberian Peninsula? ›

The main adaptations that explain the rabbit's adaptive success are its nutrition (wide adaptation to food and good nutritional use of caecotrophy), immune system (powerful and developed), and other aspects related to genetics and behaviour.

What adaptations do Oryctolagus cuniculus have? ›

Rabbits can build their own burrows, which allows for a more controlled environment, and their faeces provide a substrate to the soil that enriches the appearance of plant species. These adaptations allow for survival in unfavourable situations.

What is the adaptation of European rabbit? ›

The paws of the rabbits have claws in which aid in gripping the ground when running, as well as burrowing. Another adaptation that rabbit has is the cecum in the digestive track. This allows the rabbit to get nutrients from the otherwise indigestible parts of all the plants they eat.

What are 5 adaptations of a rabbit? ›

Rabbits have long ears, which are likely an adaptation for detecting predators. They also have long, powerful hind legs and a short tail. Rabbits are full-bodied and egg-shaped, wild rabbits are rather uniform in body proportions and stance.

How has the European rabbit changed the physical components of the ecosystem? ›

Feral rabbits compete with native wildlife, damage vegetation and degrade the land. They ringbark trees and shrubs, and prevent regeneration by eating seeds and seedlings. Their impact often increases during drought and immediately after a fire, when food is scarce and they eat whatever they can.

What are the keys to the adaptive success of European wild rabbit Oryctolagus cuniculus in the Iberian Peninsula? ›

The main adaptations that explain the rabbit's adaptive success are its nutrition (wide adaptation to food and good nutritional use of caecotrophy), immune system (powerful and developed), and other aspects related to genetics and behaviour.

What are the special adaptations of a swamp rabbit? ›

Swamp rabbits have several adaptations to avoid predators: cryptic coloration, "freezing", and rapid, irregular jumping patterns.

What are the key features of the European rabbit? ›

The European rabbit can be identified by long floppy ears, short tail, and long jumping gait. The adult coats are typically gray-brown, but range from sandy color to black or dark gray. The underside of the rabbits are completely white with all color variations.

How do European rabbits survive? ›

The European rabbit lives in warrens that contain 2–10 other individuals living in smaller groups to ensure greater breeding success. Territoriality and aggression contribute greatly to the rabbits' maturation process, and help ensure survival of the population.

How do European rabbits defend themselves? ›

A rabbit's main defense is their ability to run away and hide as quickly as possible. However, cornered rabbits are also able to use their claws, teeth, and strong hind legs to attempt to fight off predators and defend themselves.

What are the 5 characteristics of rabbit? ›

Rabbits are small, furry mammals with long ears, short fluffy tails, and strong, large hind legs. They have 2 pairs of sharp incisors (front teeth), one pair on top and one pair on the bottom. They also have 2 peg teeth behind the top incisors.

What is a rabbit ecological adaptation? ›

Answer: An ecological adaptation is a physiological, behavioural or morphological character of an organism that allows it to survive and reproduce in its natural environment. Adaptations allow the organisms to survive in their current ecological environment in which they are residing.

What is the Oryctolagus cuniculus habitat? ›

Adults weigh 1–2.25 kg and range in length from 35 to 45 cm1. and occur in a variety of habitats, including urban and coastal areas. They prefer low vegetation, well-drained, deep sandy soils and refuge such as scrub, blackberries or fallen logs1. Rabbits construct large warrens up to 3 m deep and 45 m long.

What are the effects of the European rabbit? ›

Their digging and browsing leads to a loss of vegetation cover, which in turn can result in slope instability and soil erosion. European rabbits impact agricultural activities by reducing productivity across most enterprises, from forestry and revegetation initiatives through to viticulture, grazing and cropping.

How did rabbits survive evolution? ›

Evolution has favored rabbits with shorter ears, so the larger surface area does not cause them to lose heat in more temperate regions. The opposite can be seen in rabbits that live in hotter climates; possessing longer ears with a larger surface area helps with dispersion of heat.

What are the features of the Oryctolagus? ›

Rabbits are characterised by their long ears, long hind legs, short fluffy tail and feet that are well furred beneath, with large straight claws. Males and females are similar in size and appearance; male rabbits may have a slightly broader head. Adults weigh 1–2.25 kg and range in length from 35 to 45 cm1.

What are the adaptations of the desert bunny? ›

To avoid overheating in the desert, Cottontails tend to be more active at night. They are light colored to minimize absorption of solar heat and have large ears to help radiate body heat into the air.

What are the adaptations of the sea bunny? ›

The Jorunna Parva has structural and behavioral adaptations. One structural adaption of the sea bunny is that is had gills on it's behind to let breath in the salty waters. One behavioral adaption is that it sprays toxins when a predator find them so that it can protect itself.

What are the features of the Cuniculus? ›

The Domestic Rabbit, Oryctolagus Cuniculus

The European rabbit possesses a mixture of features that make it an appealing model for in vivo research: an intermediate body size, tractable disposition, ability to breed readily in captivity, and a short generation time.

Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 6629

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.