Astronomers Are on the Hunt for Dyson Spheres (2024)

There's something poetic about humanity's attempt to detect other civilizations somewhere in the Milky Way's expanse. There's also something futile about it. But we're not going to stop. There's little doubt about that.

One group of scientists thinks that we may already have detected technosignatures from a technological civilization's Dyson spheres, but the detection is hidden in our vast troves of astronomical data.

A Dyson sphere is a hypothetical engineering project that only highly advanced civilizations could build. In this sense, "advanced" means the kind of almost unimaginable technological prowess that would allow a civilization to build a structure around an entire star. These Dyson spheres would allow a civilization to harness all of a star's energy.

A civilization could only build something so massive and complex if they had reached Level II in the Kardashev Scale. Dyson spheres could be a technosignature, and a team of researchers from Sweden, India, the U.K., and the U.S. developed a way to search for Dyson sphere technosignatures they're calling Project Hephaistos. (Hephaistos was the Greek god of fire and metallurgy.)

They've published their results in the Monthly Notices of the Royal Astronomical Society. The research is titled "Project Hephaistos—II. Dyson sphere candidates from Gaia DR3, 2MASS, and WISE."

The lead author is Matías Suazo, a Ph.D. student in the Department of Physics and Astronomy at Uppsala University in Sweden. This is the second paper presenting Project Hephaistos. The first one is here.

"In this study, we present a comprehensive search for partial Dyson spheres by analyzing optical and infrared observations from Gaia, 2MASS, and WISE," the authors write. These are large-scale astronomical surveys designed for different purposes.

Each one of them generated an enormous amount of data from individual stars. "This second paper examines the Gaia DR3, 2MASS, and WISE photometry of ~5 million sources to build a catalogue of potential Dyson spheres," they explain.

Combing through all of that data is an arduous task. In this work, the team of researchers developed a special data pipeline to work its way through the combined data of all three surveys. They point out that they're searching for partially completed spheres, which would emit excess infrared radiation.

"This structure would emit waste heat in the form of mid-infrared radiation that, in addition to the level of completion of the structure, would depend on its effective temperature," Suazo and his colleagues write.

The problem is, they're not the only objects to do so. Many natural objects do, too, like circ*mstellar dust rings and nebulae. Background galaxies can also emit excess infrared radiation and create false positives. It's the pipeline's job to filter them out.

"A specialized pipeline has been developed to identify potential Dyson sphere candidates focusing on detecting sources that display anomalous infrared excesses that cannot be attributed to any known natural source of such radiation," the researchers explain.

The pipeline is just the first step. The team subjects the list of candidates to further scrutiny based on factors like H-alpha emissions, optical variability, and astrometry.

In the last cut, 368 sources survived. Of those, 328 were rejected as blends, 29 were rejected as irregulars, and four were rejected as nebulars. That left only seven potential Dyson spheres out of about 5 million initial objects, and the researchers are confident that those seven are legitimate.

"All sources are clear mid-infrared emitters with no clear contaminators or signatures that indicate an obvious mid-infrared origin," they explain.

These are the seven strongest candidates, but the researchers know they're still just candidates. There could be other reasons why the seven are emitting excess infrared. "The presence of warm debris disks surrounding our candidates remains a plausible explanation for the infrared excess of our sources," they explain.

But their candidates seem to be M-type (red dwarf) stars, and debris disks around M-dwarfs are very rare. However, it gets complicated because some research suggests that debris disks around M-dwarfs form differently and present differently.

One type of debris disk called Extreme Debris Disks (EDD) can explain some of the luminosity the team sees around their candidates. "But these sources have never been observed in connection with M dwarfs," Suazo and his co-authors write.

That leaves the team with three questions: "Are our candidates strange young stars whose flux does not vary with time? Are these stars' M-dwarf debris disks with an extreme fractional luminosity? Or something completely different?"

"After analyzing the optical/NIR/MIR photometry of ~5 x 106 sources, we found seven apparent M dwarfs exhibiting an infrared excess of unclear nature that is compatible with our Dyson sphere models," the researchers write in their conclusion.

There are natural explanations for the excess infrared coming from these seven, "But none of them clearly explains such a phenomenon in the candidates, especially given that all are M dwarfs."

The researchers say that follow-up optical spectroscopy would help understand these seven sources better. A better understanding of the H-alpha emissions is especially valuable since they can also come from young disks.

"In particular, analyzing the spectral region around H-alpha can help us ultimately discard or verify the presence of young disks," the researchers write.

"Additional analyses are definitely necessary to unveil the true nature of these sources," they conclude.

More information: Matías Suazo et al, Project Hephaistos – II. Dyson sphere candidates from Gaia DR3, 2MASS, and WISE, Monthly Notices of the Royal Astronomical Society (2024). DOI: 10.1093/mnras/stae1186

Astronomers Are on the Hunt for Dyson Spheres (2024)

FAQs

Astronomers Are on the Hunt for Dyson Spheres? ›

A team of astronomers have taken the third approach by searching through recent astronomical survey data to identify seven candidates for alien megastructures, known as Dyson spheres, "deserving of further analysis." Their research is published in the journal Monthly Notices of the Royal Astronomical Society.

What is the Dyson sphere in astronomy? ›

Scientists say they've found potential evidence. Freeman Dyson theorized that hypothetical alien megastructures would give off infrared radiation and searching for that byproduct would be a viable method for searching for extraterrestrial life.

What is the Dyson sphere theory? ›

The sphere would be composed of a shell of solar panels around the star, making it so that all of its energy radiated would hit one of these panels, where its energy could be collected and used. Thus a Dyson sphere would create not only immense living space, but also gather extraordinary amounts of energy.

Who proposed Dyson sphere? ›

Dyson spheres were first proposed by the physicist Freeman Dyson in 1960 as a way for an advanced civilisation to harness a star's power. Consisting of floating power collectors, factories and habitats, they'd take up more and more space until they eventually surrounded almost the entire star like a sphere.

What would a Dyson sphere do to Earth? ›

You could build a solid sphere around the sun to catch every last ray. In doing so, you'd have 550 million times more surface area than our whole planet, all catching rays to send back to Mother Earth in the form of raw power.

Could humans build a Dyson sphere? ›

Although Dyson sphere systems are theoretically possible, building a stable megastructure around the Sun is currently far beyond humanity's engineering capacity. The number of craft required to obtain, transmit, and maintain a complete Dyson sphere exceeds present-day industrial capabilities.

Could we live on a Dyson sphere? ›

If it could be stabilized, a Dyson Sphere built at 93 million miles from the sun, the same distance as Earth, would contain about 600 million times the surface area of our planet in its interior. However, comparatively little of the surface would be habitable on account of a lack of gravity.

Does a Dyson sphere exist? ›

If any truly exist, Dyson spheres, or Dyson swarms, are artificial megastructures, built by extraterrestrial civilizations to harness their stars' energy. Astronomers have found 60 possible candidate stars, after searching through millions of stars for signs of Dyson spheres.

How far away would a Dyson sphere be? ›

The simplest form of Dyson sphere might begin as a ring of solar power collectors, at a distance from a star of, say, 100 million miles. This configuration is sometimes called a Dyson ring.

How much energy would a Dyson sphere produce? ›

A real dyson sphere would take hundreds of thousands of years, if not millions of years and use up more material than entire gas giants are composed of. I'd put it at 2 million energy production per month because that is the maximum amount of energy you can in theory store.

What did NASA discover something strange in the solar system? ›

TOI-3757 b - Marshmallow planet

Discovered 2022: A gas giant exoplanet with the density of a marshmallow has been detected in orbit around a cool red dwarf. TOI-3757 b, is the lowest-density planet ever detected around a red dwarf star (2022).

What is the science behind the Dyson sphere? ›

A Dyson sphere is a hypothetical, large mechanical structure – a megastructure – designed to harness the energy of stellar nuclear furnaces. The basic idea is that a structure is constructed around a star which converts, stores or otherwise utilises the star's radiant energy.

Why haven t we made a Dyson sphere? ›

The construction of a Dyson Sphere would be an enormous undertaking that would require a vast amount of resources and advanced technology, and would supposedly enable human flourishing on a massive scale.

Top Articles
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 6638

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.